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1. Introduction. The elliptic integral of the third kind may be defined as 

( 1 ) l(O2 ,k) = J i( 1- 2 sin2 0)v/(j -k2'sin2 0) 

(O ; 0 < r/2); -_ < a2 < oo;0 ? k2 < 1. When 0 = 7/2, it is known that 
the above integral can be expressed in terms of elliptic integrals of the first and 
second kind, respectively [1]. For other values of 0, the integral can be expanded in 
series involving theta functions. Because of their high complexity, these are seldom 
used as a means of computation. Recourse is usually made to evaluation of the in- 
tegral by quadrature, or sometimes by numerically integrating the differential 
equation which is satisfied by 1(0), ak2, k) when the latter is regarded as a function of 
k. A combination of these last mentioned methods was employed by Selfridge and 
Maxfield [2] in compiling their extensive tables. Clearly either one is wholly unsuit- 
able if (for example) a computer subroutine for obtaining II(0, ac2, k) were required, 
and even the representation by means of theta functions would probably be much 
too clumsy to use as a means of generating the function directly. 

The method presented in the present paper, based on Gauss' modulus-reducing 
transformation, enables one to write an efficient program for direct computation of 
the integral for any given values of its three arguments. 

Numerous methods using this and&similar transformations have been proposed 
as a means of computing integrals of the first and second kind, [3], [4], [5], but the 
utility of Gauss' transformation as a practical tool for computing integrals of the 
third kind appears to have been overlooked. 

The basic idea is to express the original integral in terms of one with a smaller 
value of the modulus together with perhaps elementary functions, and to apply the 
transformation repeatedly until the modulus is sufficiently small for the integral to 
be evaluated in terms of elementary functions. The value of the original integral 
may then be found by reversing the order of the transformations or, alternatively, 
by developing a recurre'nce relationship which enables one to express the original 
integral directly in terms of elementary functions. 

2. Gauss' Transformation Defined. The basic relations to be used are listed 
below in a form suitable for routine computation. Since all of the formulae or their 
equivalents can be found elsewhere (see, e.g., [1]. Art. 164.02), their derivations 
will not be given here. 

Defining 

(2) F(0,Ic) f I /(1 - kI2 sin2 ck) 
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and 

(3) Hf(, a2, k) = 1 (1- 2sin2 0)V(1-k2 sin2 4)' 

it can be shown that 

(4) F(0, k) = (1 + k1)F(01 kl, 

12 
H I(0 a2, k) = - {2 (1 + ki) II) (Oi, al2 ki) + (1 + ki) (p - 1)F(01, k1) 

p 

- 1(6 a2 O)J, 

where 

(6) k' = x/(1 - k2)p 

(7) p=V(1-k2/a2), 

(8) ki =l+ ,k 

(9) 8mGn = 1 (1+ k') k28in2) ' 

(10) ai2 = a2 ( 
and 

I (1 - a2) tan 1(N/(l - a2) tan 0), a2 <1, 

(11) (0, a2 0) tan, a2 = 1, 

l~~~~~~~~ _/a- I n8|1 ( ) tan a 

(For a2 > 1 11(0, 2 k) is defined to be the Cauchy principal value of the resulting 
divergent integral when 0 > sin' (1/a).) 

In order that Eq. 5 define a real transformation, it is necessary that p be real. 
Clearly, this can happen in three of four possible cases, namely: 

Ca8e 1. a2 < 0; 
Ca8e 2. 2 2 1; 
Ca8e 3. k2 < a2 f 1. 

But, in addition, it can be shown that in each of these three cases the new values 
of p and k will also fall into the same range, and therefore, that the transformation 
may be applied successively until a modulus of sufficiently small magnitude has been 
reached. We consider each of these in turn, after first noting that 

(12) Pi a2 i -kiQ+p)). 

Case I. a2 < o 
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In this case, it is clear that a12 < 0 and, hence, a sequence of real pi and ai2 will 
always result. 

Case II. a2 = 1. 

Here since (1 - k2/a2) > k/2, p k k' and, therefore, a,2 > a2 2 1 so the se- 
quence will again remain real. 

Case III. 0 < 1.2 a 2. 

In this case, since k2/a2 < 1 alnd p < 1, it follows that 

k12/aJ2 = k1(l - p)/(l + p) < 1. 

Thus, all subsequent pi, ai will be real. 
In the remaining 

Case IV. 0 < a 2 < k2, 

The transformation can not conveniently be applied, since complex values will 
result in the subsequent transformations. However, since k2/a2 > 1, II(0, k12/a2, k) 
may be found by einploying the transformation applicable to Case II, and the de- 
sired result obtained by using the following known identities [1, Art. 117.02]: 

11(O a2 k) + HI(0, k2/a2, k) = F(O) k) + (1 t 2 )) 

U = I ((1 la . k2/a 2)) tan ; 

a <0, or k12<a2<1; 

(13) 11(0, a2 k) + 11(0, k2/a,2,k) =F(G, k) + 2V((1 -a2)(1 - k2/a2)) 

*ln 1 + U 

U = - (( l (k2 sin2 0k 1))tan@; 

2 2 2 a > 1 or 0 <a <k2 

3. The Case a2 > 1. When a2 > 1, the function II(0, a2, k) is singular for 
sill 0 = 1/a, and for 0 > sin-1 (1/a) is defined by the Cauchy principal value of the 
resulting divergent integral. Since it is easier to work with quantities which remain 
finite, we introduce, in place of II(6, a2, k), the function 

(14) 11(0,a2, ak) = 1(0, a2, k) - 1 H(0, a2, 0), 
p 

and rewrite Eq. (5) as 

II(,a2, 2k) 

(15) =12 
- {2(1 + kl)tI(0l, al Y ki) + (p - 1)(1 + ki)F(01 , k,) - H(G, 0l, al2)} 
p 

where 

(16) H(0) Al, a2, al2) = 2 [(0, a2,O0) - 1+ II1(, al2, 0)] 
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Writing U(0, a2) V(a2- 1) tan 0, this becomes 

(O,1, 2, a12) 

(17) 1 1 + U(0 2) | 1 + ki i 1 + U(O, al2) 
2 -1 In _I__ __ 

= NAX _1 l 1 - U(, a2) piV(ai2-1) 1- U(01, a12) 

and one can easily verify that 

(18) 1~~+k1 _ /(ai2-1) 
( 18) P1 +/ 

ki a 

Pi vT(a2l 

Hence 

ol 2 2 ~ 1 [1 + U(0) a2)][1 _NU(O, al2) 
(19) H(O) )t1, i, 2-/(a . 1) {I [1 + U(01 , ai2)][1 - 2U(0,a2)] | 

The expression (19) remains finite when 0 -* sin-' (1/a), 01 -+ sin7'( 1/a1), but as- 
sumes an indeterminate form. However, it is easily transformed in such a way that 
it becomes determinate by multiplying numerator and denominator by 

[1 + U(01, 1 2)] [1 + U(0, a2)], 

and simplifying: 

H(0,0 , a2,il 2) 

(20) 1 In [Cos 0, -/(I -k2 sin2 01) + P1./( a12 1 )sin 01]2 
V W 1) 01] 2 1 k1~ I2 1} V( -1 [cos 01 + V/(a,2 - 1)sin 012 1 - 2 sin2 01 

For 0- = sin-1(1/al) this reduces simply to 

H(0,O, a2, a2) = 1 in [pl(1 + P)2 

The addition formula, Eq. (13), can also be rewritten so as to avoid the singu- 
lar behavior when sin 0 = 1/a: 

T(0 a2 k ) + I(0, k2/a2, ck) 

(21) =F(0,k)+ 1 l)1 | (1- U)(1+V) 

where 

(22) V = I (1(ak2 = tan 0; 

(23) U = V(a2 -U1)tan0. 

By a transformation similar to that used in obtaining (20) we can show that the 
last term of Eq. (21) can also be written as 

(24) 1 C/[coSV-(l - k2sin2O) + p.\/(a2 
_ 1)sin0]21 

p-\/(a2- 1) V [COS0 + v\(a2 - 1)sin ]2(1 _ k2/a2 sin2 0) 
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which for sin 0 -1/a reduces to 

1 In I - k 2/a2) p.1(2- 1 ) 
in 

1k2/a4j 

Eqs. (20) and (21) are still undefined when a 1, but in this case it can be shown 
that 

H(G,t91, 1, 1) -2k12(1 + kl)sin 01 cos G1 
( XY X' kl'-\ (1 - k 12sin201)[ck1' + x/(1 - k12sin2 01)] 

and that for a -* 1 the last ternm of Eq. (21) becomes 

-k2 sin o cos o 
k'- (1 - k2 sin2 0) [k' + (l -k2 sin2 0)] 

4. Calculation of 11A(, a 2, k) by a Recurrence Procedure. Eq. (15) expresses a 
linear relationship between the function 1(0, a 2 k) and the same function of the 
parameters 01, ai2, k1 . A similar relation can be written between III(O, ai2, k1) and 
11(02 a22, k2) where 02 , a22, k2 are found from 01 , a12, ki in the same way as 0A, ail2, k 
were found from the original parameters. 

In general we can write 

1(0 X n2 kn) =-[2(1 + kn+l)LI(0n+l X ain1 X kn+l) 
(25) Pn 

+ (1 + kn+1)(pn - 1 )F(Gn+, X kn+1) - G(On X an 

where 

(26) G(On, an 2) l Hl(0On X an2 0)) 

and the variables with subscript (n + 1) come from those with subscript (n) 
through the relations 

1 - kn 2 + pn\ 22 
) kn+ = 1 + k; an+1 1 + k an 

(27)nn 

pn+1 = 1kn+1 Pn/s in , 
(1 + 

k)') 
sin 

n n 
Pn+1 = ~~~~ - + Pnj ;sn -1 + -01( - kn2Sin120On) 

Eq. (25) shows that the expression H1(0l, a, 2 ki) in Eq. (5) may be replaced 
by a corresponding relation in terms of 11(02 , a2 , k2) and that this process may be 
continued so that the result after N steps will be of the form 

(28) 11(0, a2, k) = QNF(0N X kN) + SNH(0N I AN 
2 

kN) - TN; 

F(0, k) = RNF(ON kN). 

But if N is sufficiently large, 

kN - 0t 

F (ON, kN) - 9N 
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and 

II(ON, aN,) kN) - G(N,I aN 2). 

Hence, finally, 

11H(0 a2 I k) QNOfN + SNGN - TN; 

(29)F(k) RNN F(f92 k) _RNON2 - 

To discover the general rule for generating Q. , R. , Sn , Tn we write 

11(0, a2 , k) = QnF(f9 , kn) + SnH(09n , Can2 kn) - Tn 

F(0, k) = RnF(n t kn). 

Substituting from Eq. (28), 

II(, a2, k) = Qn[(l + kn+l)F(n+l , kn+1)] Tn 

(31) + [2(1 + kn+0)H(0,+1 X kn+l) 
Pn 

+ (1 + kn+1)(pn- l)F(0n+l Ikn+j) -Gn] 

or 

( (0 2 k) = (1 + kn+l) [Qn + Pn 
- 

Sn] F(n+1, kn+l) 

+ 2(1 + kn+1) S2[11(+1 c2 kG+)] -__ S- + Tn] 
Pn Pn 

It follows that, in general, 

Qn+= (1 + kn+l) [Qn + Pn Sn= Rn+l (1 + kn+,)Rn; 

=n3) 2(1 + kn+1) T T + n S pn pn 

with starting values 
Qo = 0, 

Ro= 1, 

So = 1, 

To = 0. 

When a2 > 1, the same formulae may be applied to find FI(O, a2 k) by replacing 
G(f9n , an) everywhere with H(f9n , On+) , a!n2 an+1). In this case, since 

H(ON; ON+1, CN, aCN +1) 0 02 

Eq. (29) becomes simply 

fI(O, a2, k) = QNON - TN 
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Numnerical Examples (Values of the parameters were chosen so 
as to agree with those of [2].) 
O = 1.2, k2 .708073407. 
Data applicable to all cases: 

n kn sin 0n tan n Rn 

0 .708073407 .932039086 2.572151622 1.000000000 
1 .08907025-1 .885966451 1.910442521 1.298446402 
2 .000543736 .881464024 1.866515246 1.328723767 
3 .000000018 .881437292 1.866261475 1.328904435 
4 .000000000 .881437901 1.866261466 1.328904441 

ON = 1.078896779, F(0, k) = 1.433750721. 

Example 1 
a2 -1.0 

n G. Pn a!72 Qn Sn Tn 
0 .921017208 1.306932824 -1.000000000 .000000000 1.000000000 .000000000 
1 .715170325 1.019660581 -2.243148161 .304939790 1.987013223 .704716563 
2 .698905952 1.000113490 -2.395389266 .351256386 3.988281453 2.098369430 
3 .698810935 1.000000038 - 2.396312652 .351756787 7.976742207 4.885486765 
4 .698810932 1.000000000 2.396312683 .351756819 15.953484426 10.459721422 

H(a2,0,k) = (.351756819)(1.078896779) + (15.953484426)(.698810932) - 10.459721422 
= 1.068257191. 

Example 2 
a2 = 0.8 

n Gn Pn an 2 Qn Sn T, 
0 1.912245968 .338981181 .800000000 .000000000 1.000000000 .000000000 
1 1.394007405 .923398656 .604542721 -2.531991609 7.660876021 5.641156719 
2 1.361803176 .999535557 .585500101 -3.241366666 16.979694330 17.206386788 
3 1.361618020 .999999984 .585387360 -3.249698228 33.979787811 40.340132749 
4 1.361618014 1.000000000 .585387356 -3.249698780 67.959577009 86.607624893 

II(a2,o,k) = (-3.249698780)(1.078896779) + (67.959577009)(1.361618014) - 86.60762489 
= 2.421269850. 

Example 3 
a2 = 0.6, 2 = k2/a2 = 1.180122345. 

n G. Pn an2 Qn S. Tn 

0 3.684909360 .632455532 1.181012235 .000000000 1.00000000 .000000000 
1 2.755627806 .965818473 1.325555196 -.754577623 4.106048049 5.826353274 
2 2.692374314 .9997,97252 1.341053182 -.920879718 8.701000456 17.541536299 
3 2.692008264 .999999993 1.341145940 - .922769638 17.407876491 40.972637039 
4 2.692008251 1.000000000 1.341145943 - .922769762 34.815793383 87.834838569 

n(&2,o,k) = (-.922769762)(1.078896779) + (34.815793383)(2.692008251) - 87.834838569 
= 4.893991168 

1 /1+U 
- ((l-a2) (1 - k'/la)) In , |/1 - U = 5.457365035. 

F(o,k) = 1.433750721. 
II(a'2,,k) = 5.457365035 + 1.433750721 - 4.893991169 

= 1.997124588. 
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